Razones trigonométricas de la suma de dos ángulos:
Visualizando la figura que está a la derecha nos damos cuenta de que:
sen(a+b)=AR+RP=CB+RP
Calculamos las medidas de los segmentos CB y RP:
sen a=CB/OB---->CB=OB*sen a
cos b=OB/1------>OB=cos b
Lo que nos daría una solución así:CB=sen a*cos b
Procedemos a calcular ahora el segmento RP:
cos a=RP/PB------>RP=P*cos a
sen b=PB/1-------->PB=sen b
Lo que nos daría una solución así:RP=sen b*cos a
Por lo tanto llevando estas expresiones a la primera igualdad nos quedaría el seno de la suma de los dos ángulos:
sen(a+b)=sen a*cos b+sen b*cos a
EJEMPLO:Vamos a determinar las razones trigonométricas de un ángulo de 75º.
sen 75º=sen(45º+30º)=sen 45º*cos 30º+sen 30º*cos 45º=√2/2*√3/2+1/2*√2/2=√6/4+√4/4.
Si no recuerdas las razones trigonométricas de los ángulos mas conocidos,aquí te dejo un enlace:
Próximamente subiré el resto de razones trigonométricas de la suma de dos áangulos,si habéis tenido alguna duda por favor dejádmela en los comentarios,gracias.
No hay comentarios:
Publicar un comentario